A construction of processes with one-dimensional martingale marginals, associated with a Lévy process, via its Lévy sheet

نویسنده

  • F. Hirsch
چکیده

Abstract We give some adequate extension, in the framework of a general Lévy process, of our previous construction of processes with one-dimensional martingale marginals, done originally in the set-up of Brownian motion. The Lévy process framework allows us to streamline our previous arguments, as well as to reach a larger class of such processes, even in the Brownian case. We give some illustrations of our construction when the Lévy process is either a Gamma process, or a Poisson process. We also work in the fractional Brownian and stable frameworks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unifying constructions of martingales associated with processes increasing in the convex order, via Lévy and Sato sheets

In this paper, we present a unified framework for our previous constructions of martingales with the same one-dimensional marginals as particular cases of processes increasing in the convex order. This framework encompasses our former uses of Lévy sheets, Sato sheets and self-decomposable laws. New examples of processes increasing in the convex order are also exhibited, but we do not know how t...

متن کامل

A Martingale Representation for the Maximum of a Lévy Process

By using Malliavin calculus for Lévy processes, we compute an explicit martingale representation for the maximum of a square-integrable Lévy process.

متن کامل

Martingale measures for the geometric Lévy process models

The equivalent martingale measures for the geometric Lévy processes are investigated. They are separated to two groups. One is the group of martingale measures which are obtained by Esscher transform. The other one is such group that are obtained as the minimal distance martingale measures. We try to obtain the explicit forms of the martingale measures, and we compare the properties of the mart...

متن کامل

A Note on Esscher Transformed Martingale Measures for Geometric Lévy Processes

The Esscher transform is one of the very useful methods to obtain the reasonable equivalent martingale measures, and it is defined with relation to the corresponding risk process. In this article we consider two kinds of risk processes (compound return process and simple return process). Then we obtain two kinds of Esscher transformed martingale measures. The first one is the one which was intr...

متن کامل

Lévy Process Conditioned by Its Height Process

In the present work, we consider spectrally positive Lévy processes (Xt, t ≥ 0) not drifting to +∞ and we are interested in conditioning these processes to reach arbitrarily large heights (in the sense of the height process associated with X) before hitting 0. This way we obtain a new conditioning of Lévy processes to stay positive. The (honest) law Px of this conditioned process is defined as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009